Chemistry and Physics of Mechanical Hardness
2%
OFF
Available
 
About the Book

A comprehensive treatment of the chemistry and physics of mechanical hardness
Chemistry and Physics of Mechanical Hardness presents a general introduction to hardness measurement and the connections between hardness and fundamental materials properties.
Beginning with an introduction on the importance of hardness in the development of technology, the book systematically covers:
Indentation
Chemical bonding
Plastic deformation
Covalent semiconductors
Simple metals and alloys
Transition metals
Intermetallic compounds
Ionic crystals
Metal-metalloids
Oxides
Molecular crystals
Polymers
Glasses
Hot hardness
Chemical hardness
Super-hard materials
Chemistry and Physics of Mechanical Hardness is essential reading for materials scientists, mechanical engineers, metallurgists, ceramists, chemists, and physicists who are interested in learning how hardness is related to other properties and to the building blocks of everyday matter

Contents of the book :
1. INTRODUCTION.
1.1. Why hardness matters (a short history).
1.2. Purpose of this book.
1.3. The nature of hardness.
2. INDENTATION.
2.1. Introduction.
2.2. The Chin-Gilman parameter.
2.3. What does indentation hardness measure?
2.4. "Indentation Size Effect".
2.5. Indentation size.
2.6. Indentation vs. scratch hardness.
2.7. Blunt or "soft" indenters.
2.8. Anisotropy.
2.9. Indenter and Specimen Surfaces.
3. CHEMICAL BONDING.
3.1. Forms of bonding.
3.2. Atoms.
3.3. State symmetries.
3.4. Molecular bonding (hydrogen).
3.5. Covalent bonds.
3.6. Bonding in solids.
3.7. Electrodynamic bonding.
3.8. Polarizability.
4. PLASTIC DEFORMATION.
4.1. Introduction .
4.2. Dislocation movement.
4.3. Importance of symmetry.
4.4. Local inelastic shearing of atoms.
4.5. Dislocation multiplication.
4.6. Individual dislocation velocities (microscopic distances).
4.7. Viscous drag.
4.8. "Deformation softening" and elastic relaxation.
4.9. Macroscopic plastic deformation.
5. COVALENT SEMICONDUCTORS.
5.1. Introduction.
5.2. Octahedral shear stiffness.
5.3. Chemical bonds and dislocation mobility.
5.4. Behavior of kinks.
5.5. Effect of polarity.
5.6. Photoplasticity.
5.7. Surface environments.
5.8. Effect of temperature.
5.9. Doping effects.
6. SIMPLE METALS AND ALLOYS.
6.1. Intrinsic behavior.
6.2. Extrinsic sources of plastic resistance.
7. TRANSITION METALS.
7.1. Introduction.
7.2. Rare earth metals.
8. INTERMETALLIC COMPOUNDS.
8.1. Introduction.
8.2. Crystal structures.
8.3. Calculated hardness of NiAl.
8.4. Superconducting intermetallic compounds.
8.5. Transition metal compounds.
9. IONIC CRYSTALS.
9.1. Alkali halides.
9.2. Glide in the NaCl structure.
9.3. Alkali halide alloys.
9.4. Glide in the CsCl structure.
9.5. Effect of imputities.
9.6. Alkaline earth fluorides.
9.7. Alkaline earth sulfides.
9.8. Photomechanical effects.
9.9. Effects of applied electric fields.
9.10. Magneto-plasticity.
10. METAL-METALLOIDS (hard metals).
10.1. Introduction.
10.2. Carbides.
10.3. Tungsten carbide.
10.4. Borides.
10.5. Titanium diboride.
10.6. Rare metal diborides.
10.7. Hexaborides.
10.8. &164;oron carbide (carbon quasi-hexaboride).
10.9. Nitrides.
11. OXIDES.
11.1. Introduction.
11.2. Silicates.
11.3. Cubic oxides.
11.4. Hexagonal (rhombohedral) oxides.
11.5. Comparion of transition metal oxides with "hard metals".
12. MOLECULAR CRYSTALS.
12.1. Introduction.
12.2. Anthracene.
12.3. Sucrose.
12.4. Amino acids.
12.5. Protein crystals.
12.6. Energetic crystals (explosives).
12.7. Commentary.
13. POLYMERS.
13.1. Introduction.
13.2. Thermosetting resins (phenolic and epoxide).
13.3. Thermoplastic polymers.
13.4. Mechanisms of inelastic plasticity.
13.5. "Natural" polymers (plants).
13.6. "Natural" polymers (animals).
14. GLASSES.
14.1. Introduction.
14.2. Inorganic glasses.
14.3. Metallic glasses.
15. HOT HARDNESS.
15.1. Introduction.
15.2. Nickel aluminide versus oxides.
15.3. Other hard compounds.
15.4. Metals.
15.5. Intermetallic compounds.
16. CHEMICAL HARDNESS.
16.1. Introduction .
16.2. Definition of Chemical hardness.
16.3. Physical (mechanical) hardness.
16.4. Hardness and electronic stability.
16.5. Chemical and elastic hardness (stiffness).
16.6. Band gap density and polarizability.
16.7. Compression induced structure changes.
16.8. Summary.
17. SUPER-HARD MATERIALS.
17.1. Introduction.
17.2. Principles for high hardness.
17.3. Friction at high loads.
17.4. Examples of superhard materials
Book Details
ISBN-13: 9780470226520
EAN: 9780470226520
Publisher Date: 01 Jun 2009
Binding: Hardcover
Continuations: English
Dewey: 620.112
Illustration: Y
LCCN: 2008038594
No of Pages: 214
PrintOnDemand: N
Spine Width: 20 mm
ISBN-10: 0470226528
Publisher: Wiley-Interscience
Acedemic Level: English
Book Type: English
Depth: 25
Height: 230 mm
Language: English
MediaMail: Y
Number of Items: 01
Series Title: English
Width: 153 mm